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ABSTRACT
In order to meet the tradeoff of QoE(quality of experience)-Fairness
when spectrum resources are insufficient, it is necessary to study
the dynamic spectrum allocation problem, especially in the scenario
where a base station who acts as a single agent wishes to reliably
communicate with the multiple users by centrally managing the
spectrum resources. To overcome the fact that user behavior and
environment are unknown and dynamic, this paper modeled the
dynamic spectrum allocation as an optimization problem, and put
forward a dynamic spectrum allocation strategy which based on
adaptive deep Q-learning network (ADQN). On this basis, a new
reward function is designed to drive the learning process which
considering different types of user’s communication needs, and a
priority experience replay strategy is proposed to accelerate net-
work training speed which based on reducing time error. Moreover,
simulation results show that the proposed strategy can accelerate
the convergence speed of ADQN and improve the rationality and
effectiveness of dynamic spectrum allocation.
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1 INTRODUCTION
Dynamic spectrum sharing has attracted great attention in the in-
dustry and academia and it is one of the effective ways to solve
the spectrum traffic [1]. However, with the explosive growth of the
radio equipment types and data traffic, the spectrum management
is facing more and more challenge. Specifically, the existing spec-
trum management approaches which ignore the user’s satisfaction
and the quality of service (QoS)-based model cannot be applied to
all the scenarios. Thus, to improve user’s satisfaction, the quality
of experience (QoE)-based model is proposed to replace the QoS
in [2]. The mean opinion score (MOS) is the most widely adopted
QoE models [3], which provides a unified and common metric for
different applications, therefore, we can use it to carry out inte-
grated traffic management and resource allocation across traffic
of dissimilar features. However, wireless spectrum resources are
finite, which cannot withstand the exponential growth in the num-
ber of terminals and data traffic. In addition, the fixed frequency
allocation strategy wastes spectrum resources and exacerbates the
resource gap [4]. To address above problems, the dynamic spectrum
allocation has been proposed as a promising approach to improve
the spectrum efficiency [1],[5],[6].

In recent years, reinforcement learning (RL) and deep RL (DRL)
have been introduced into the field of dynamic spectrum allocation
in order to cope with the dynamic characteristics of spectrum en-
vironment [7],[8]. The performance of traditional RL methods is
limited by the state space and action space of the problem [9]. Deep
Q-learning network (DQN) is a classical DRL algorithm, which com-
bines DL and RL, enabling agent to obtain approximate solution of
complex system in various complicated states and actions [10]. Ex-
perience replay is a typical method of DQN training. In this method,
the samples which generated by the interaction between agents
and the environment are saved to form an experience pool [11].
During the training, several samples are randomly selected from the
experience pool to train the Q-network, so it breaks the correlation
between training samples and guarantees the convergence of value
function [12],[13].

In the dynamic spectrum sharing system with the limited spec-
trum resources, it is challenging to satisfy communication require-
ments of various types of users [14-18]. Considering that there is no
cooperation between primary user (PU) and secondary user (SU), a
spectrum sharing method based on DQN to dynamically adjust its
transmission power is proposed in [14]. Moreover, to address the
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multi-channel transmission problem, Li et al. proposed the dynamic
spectrum sensing and aggregation method based on the centralized
DQN in [15]. In addition, Shi et al. proposed a solution for spectrum
resource management in lIoT networks with the aim of facilitating
limited spectrum sharing among different types of user equipment
in [16]. Since it is very difficult to obtain the environmental infor-
mation in real-time, the optimization problem was modeled as a
Markov decision process (MDP) and a centralized resource manage-
ment scheme was proposed in [17], whereas a partially observable
Markov decision process (POMDP) is modeled in [15]. Furthermore,
to obtain the state information and adapt to the dynamic nature of
the spectral environment, the Q-learning algorithm and the long
short-term memory (LSTM) DQN algorithm were applied to opti-
mize the spectrum resources management policy in [17] and [18],
respectively.

Motivated by above, this paper investigates a dynamic spectrum
allocation method with the QoE-Fairness tradeoff based on ADQN
with prioritized experience replay. The main contributions of this
paper are summarized below.

1) A general spectrum sharing model with wide applications
based on a novel QoEmodel is proposed in this paper. Consid-
ering the tradeoff of QoE and fairness, the dynamic spectrum
allocation problem is modeled as an optimization problem
where a certain network utility is maximized while meeting
the QoE of different kinds of Users.

2) An adaptive Deep Q-Network is proposed to solve the
dynamic spectrum allocation problem, where ADQN can
quickly obtaining the optimal strategies via the proposed
reward function and prioritized experience replay strategy.

3) Numerical results demonstrate that, the proposed ADQN
algorithm can significantly improves the mean of QoE, and
has faster convergence speed as compared to existing ap-
proaches, which confirms its effectiveness and superiority
to solve dynamic spectrum allocation problem.

2 SYSTEM MODEL
We consider an uplink dense wireless network with N =

{1, 2, ·s,N } independent orthogonal subchannels and K =

{1, 2, ·s,K} user requirements. As a typical network scenario, each
user can access only one subchannel in one time slot. If multiple
users need to transmit signal on the same subchannel at the same
time slot, there will be a conflict. Different from the concept of pri-
mary users and secondary users in traditional cognitive radio, this
paper does not fix the priority attribute of users in dynamic spec-
trum allocation problem. Users are allowed to transmit data on the
channel allocated by the base station only when some constraints
are met.

As shown in the Figure 1, all users are divided into two categories
and randomly distributed around the base station. Suppose this
scenario, there are K1 first type users, which are data traffic users,
and we assume that the spectrum use demand of each data traffic
user follows an independent Poisson distribution process. And there
are K2 second category users as video traffic users, and each video
traffic user periodically performs data acquisition and upload. In
this scenario the transmission on the sub-channel is successfully
only when the sub-channel is assigned to one user at the slot tand

Figure 1: System Model.

the quality of experience of the communication satisfies the user’s
needs; otherwise, it is transmission failure due to conflict collision,
or when the quality of experience is unsatisfactory to the user’s
needs. At the beginning of each time slot, the users wait for the
result of the spectrum resource allocation.

2.1 Transmission Model
Suppose that the total bandwidth is Band it is evenly divided into
N subchannels, the bandwidth of each subchannel is expressed as
Bw. We set Dkn (t), (k ∈ K ,n ∈ N ) as a binary indicator, where
Dkn (t) = 1 indicates that the subchannel n is allocated to the user k
in time slot t , and Dkn (t) = 0 indicates that the subchannel nis not
allocated in time slot t . All binary indicators together constitute
the spectrum allocation matrix D, which is expressed as follows.

D =


D11 D12 ·s D1n

D21 D22
...

...
. . .

Dk1 ·s Dkn


(1)

For the users, if it communicates, the SNR can be expressed as
follows:

SNRkn (t) = Dkn ∗
P I |hkn (t)|

2

σ 2 ,k ∈ K,n ∈ N (2)

where, σ 2is the received noise power, P I is the transmission power,
and hkn (t) is the fading factor allocated to the subchannel n by the
user k equipment in slot t .

Since only one user equipment is allowed to access a single
subchannel in one time slot, there is no co-channel interference.
Therefore, the instantaneous rate of transmission can be given by
the following.

Rkn (t) = Bw log(1 + SNRkn (t)),k ∈ K (3)

Assuming that the signal modulation mode is BPSK, the end-to-end
packet loss rate Ploss can be expressed as follows.

Ploss = 1 − (1 − Pb)
l (4)

Pb =
1
2
(1 −

√
SNRkn (t)

1 + SNRkn (t)
) (5)

where Pb is the bit error rate of coherent detection, and l is the bit
length of each data packet.
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2.2 MoS-based QoE Measurement Model
This paper considers the impact of transmission rate Rkn , packet
loss rate Ploss, transmission delay TS and interrupt time TI on the
quality of two different QoE. The transmission delay TS is defined
as the time from the user waiting for the arrival of the system
service, and the interruption time TI is defined as the extra time
spent during the service due to the system aborting the resource
allocation.

In this paper, the mean opinion score (MOS) is used as the QoE
index to measure user’s satisfaction. The relationship between
transmission characteristics and MOS of different applications is
described as follows.

• Data traffic
For data traffic, the MOS is calculated based on the transmit rate,

Rkn , experienced by the end user, as follows [19].

Mi
A =

a1log10[a2Rkn (1 − Ploss )]

1 + a3(TS2 −TS) + a4TI2
(6)

whereMi
A ∈ [1, 10] represents the MOS value of the data traffic user

i . a1 − a4are the control parameters of MOS value of data transfer
users, which determined by the highest and lowest QoE value.

• Video traffic
As a real-time transmission service, the QoE model of video

traffic is as follows [20]:

Mi
V =

b1

(1 + eb2(φ−b3) )(1 + b4TS2 + b5TI2)
(7)

where MV ∈ [1, 10] represents the MOS value of the video traffic
user i , b1 −b5 are the control parameters of the MOS value of video
traffic user, which determined by the highest and lowest QoE value,
and φ is the peak signal-to-noise ratio of the image in the video,
which is defined as follows:

φ = 10 lg(
a2max
MSE

) (8)

MSE =
θ

Rkn − R0
+G0 + δ · Ploss (9)

where amax is the maximum value of the image point color,MSE is
themean square error between the distorted video and the reference
video, θ , R0 andG0 are the distortion parameters depending on the
content and coding structure of the encoded video sequence, and
δ is the parameters related to determining the compressed video
sequence [21],[22].

2.3 Performance Indicators
For dynamic spectrum sharing system, it is necessary to consider
the QoE of all users. And the mean QoE of all users in the system
is defined as follows.

MA+V =
1

10N
(

K1∑
i=1

Mi
A +

K2∑
i=1

Mi
V) (10)

Due to the different location and requirements of users, the QoE
of varies from different users with the same spectrum resources
allocated. Therefore, it is necessary to consider the fairness index as
a measure of spectrum allocation. In order to measure the change
of QoE value after scheduling, especially the change of fairness,

the fairness index is introduced. The fairness index F is defined as
follow.

F =
(
∑K1
i=1M

i
A +

∑K2
i=1M

i
V)

2

N (
∑K1
i=1M

i
A
2
+
∑K2
i=1M

i
V
2
)

(11)

where F tends to 1 to indicate fairness and tends to 0 to indicate
unfairness.

2.4 Problem Formulation
In a system where multiple types of users coexist, if only maximiz-
ing the mean QoE of all users is considered, spectrum resources will
be allocated to users with low satisfaction requirements as much as
possible, which will cause great unfairness. Therefore, considering
the lack of resources, that is, when N < K , spectrum resources
cannot be allocated to all users at the same time in this paper, pro-
pose an optimization problem that considers a tradeoff between the
mean of QoE and fairness to address dynamic spectrum allocation
problem The optimization problem is expressed as follows.

max
D

U = λMA+V + (1 − λ)F

s .t .Dkn (t) ∈ {0, 1} , (k ∈ K,n ∈ N)
N∑
n=1

Dkn (t) ≤ 1, (k ∈ K,n ∈ N)

K∑
k=1

Dkn (t) ≤ 1, (k ∈ K,n ∈ N)

MA ≥ MAmin
MV ≥ MVmin

(12)

where λ ∈ (0, 1) represents the weighting factor of the mean QoE of
all users and fairness,MAmin represents the lowest QoE threshold
of data traffic users, andMVmin represents the lowest QoE threshold
of video traffic users. Under the tradeoff between the mean QoE of
all users and fairness, it is necessary to find the optimal allocation
matrix D to maximize the objective function.

3 MDP ANALYSIS
3.1 State and Action Space
The dynamic spectrum allocation problem can be modeled as MDP
in this paper. The base station (BS) is used as the agent to observe the
status information of the whole system and to implement dynamic
spectrum allocation. The agent gets observation as follows.

O(t) = {M(t),TS(t),TI(t)} (13)

whereM(t) is the spectrum demand information of all current users
composed of binary numbers; TS(t) is the service delay informa-
tion of all current users; and TI(t) is the service interruption time
information of all current users.

In reality, it is costly to obtain real-time environmental observa-
tions. Therefore, unlike existing literatures which take the current
observed information as the input state of the agent, this paper
defines the real-time input state as:

S(t) = O(t − 1) (14)

We use the observation of the previous time slot as the current
input state of the agent, which is fundamentally different from the
spectrum allocation strategy where the communication demand
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information of all terminals and all channel state information are
known in advance.

The input state S(t), the agent makes a behavior a(t) on the
learned experience and policy. where the element k in a(t) is the
channel index assigned to the user k , and if no assignment is made
to it, its corresponding element is set to 0

3.2 The Reward Function
The reward function refers to the immediate return generated due
to the allocation of action a(t) in state S(t). Our goal is to maximize
the objective function under the tradeoff between the mean QoE
of all users and fairness. Therefore, the reward function can be
expressed as follows:

Ro(t) = F (15)

In order to make the QoE values in the optimization problem satisfy
the minimum QoE threshold, the sub-reward functions RA(t) and
RV(t) are proposed.

RA(t) =

{
1
K1

∑K1
i=1M

i
A(t), i f M

i
A(t) ≥ MAmin

1
K1

∑K1
n=1 µ1 ∗M

i
A(t),otherwise

(16)

RV(t) =

{
1
K2

∑K2
i=1M

i
V(t), i f M

i
V(t) ≥ MVmin

1
K2

∑K2
n=1 µ2 ∗M

i
V(t),otherwise

(17)

We define sub-reward functions RA(t) and RV(t) as the mean QoE
value of data traffic users and video traffic users when the threshold
constraint is met, otherwise they are set as reward values lower
than the threshold, where µ1 ∈ (0, 1) and µ2 ∈ (0, 1) are attenuation
factors.

Considering the above objectives, a new reward function is de-
signed as follows.

R(t) = (1 − λ)R0(t) + λ(RD(t) + RV(t)) (18)

where λ ∈ (0, 1) is the same as above, our goal is to find a spec-
trum allocation strategy π that maximizes the expected cumulative
discounted rewards [15].

Vπ = Eπ [
∞∑
t=0

γ tR(S(t + 1),π (O)] (19)

where γ ∈ (0, 1) is the discount factor, and π (O) is the strategy
in t + 1 slot when the current observation is O(t). Therefore, the
optimal policy π∗ can be expressed as:

π∗ = argmax
π

Vπ

= argmax
π

Eπ [
∞∑
t=0

γ tR(S(t + 1),π (O))]
(20)

4 ADQN FRAMEWORK
In network training, each sample has a different impact on the
learning process. Specifically, the significant sample means that the
neural network can recover more from it and make the agent more
effective to correct its behavior [23]. Therefore, this paper proposes
a ADQN algorithm, which introduces a parameter to measure the
importance of the training samples of the network. And the agent
can learn more effectively from some more important empirical
samples, thus improving the performance of the algorithm. In this

paper, the importance index of each sample can be measured accord-
ing to temporal difference error (TD error), which can be defined
as follows [16]:

I =
���R + γ max

a
Qtarget(s′, a′;θtarget) −Q(s, a;θ )

��� (21)

where Qtarget(s′, a′;θtarget) is the Q value of target network out-
put, Q(s, a;θ ) is the Q value of main network output, θtarget is the
network parameter of target net, θ is the network parameter of
main net, and s′ is the next state in which action a is taken at state
s(t). The larger the I , the greater the upside of the network predic-
tion accuracy and the more worthwhile of the empirical sample.
However, certain samples with large I are replayed too frequently,
which leads to loss of sample diversity and overfitting. Therefore,
the idea of simulated annealing algorithm is used as a reference
in this paper. We divide the samples in the memory unit equally
according to the mini-batch size Z , and the sampling probability
PTD of each sample e is as follows.

PTD(e) =
exp(I (e)/ζ )∑M/Z

m=1 exp(I (m)/ζ )
(22)

where, ζ is the parameter of the Boltzmann model [24].

ζ = ζ0e(−vt )ζ ≥
⌢

ζ

ζ =
⌢

ζ ζ ≤
⌢

ζ ,
(23)

whereζ0 is related to the initial temperature,
⌢

ζ represents the ending
condition in the exploration state. v affects the transition from
exploration to exploitation, andM represents the memory size. In
the initial stage of training influenced by the annealing temperature,
agent extracts samples from the memory unit in an almost random
manner, but as the number of iterations increases, the probability
of extracting significant samples will gradually increase until they
are rejected by the memory unit.

We use the DQN architecture described by Mnih et al. [9] with a
few modifications. We do not have the set of convolutional layers
since the input to the neural network is not an image. The input to
the neural network is state representation and there is a separate
output unit for each possible action. We considered a three-layer
neural network where the first two layers are fully-connected, each
consists of 64 rectifier units. The output layer is a fully-connected
linear layer with single output for each possible action. In addition,
there are two independent networks with the same structure in the
proposed ADQN algorithm. For each input S(t), the corresponding
theoretical Q value can be calculated by Bellman equation as follows
[15]:

Qtarget(s(t), a(t)) = R(t) + γ max
a

Qtarget(s′, a′;θtarget) (24)

The parameters of θtarget are obtained by regularly copying the
parameters of the main network. And the loss function is defined
as the mean square error of the target value and the Q-value, i.e.,

L(s(t);θ ) =
��Qtarget(s(t), a(t) −Q(s(t), a(t);θ )

��2 (25)

The structure of ADQN is shown in Figure 2
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Figure 2: ADQN-based Dynamic Spectrum Allocation System.

5 SIMULATION RESULTS
In this section, numerical experiments were conducted to verify
the performance of the proposed dynamic spectrum allocation
algorithm. In all simulations, considering the dynamic character-
istics of wireless channel, the signal-to-noise ratio at the receiver
is assumed to be a random variable with uniform distribution of
15∼20dB, Bw = 0.2MHz. Using (K ,N ,K2) represents the spectrum
sharing system with N subchannels and K users (K2 type II users).
The combinatorial space of hyper-parameters is too large for an ex-
haustive search. We did not perform a systematic grid search owing
to the high computational cost. Instead, we have only performed an
informal search. The values of all hyper-parameters are provided in
Table 1. And all results were obtained based on the deep learning
framework in TensorFlow 1.13.1.

Table 1: Hyper-Parameters of ADQN

Hyper-Parameters Value

Memory sizeM 1000
Mini-batch size Z 128
Discount rate γ 0.9
Learning rate α 0.005
Target network update frequency 300
Activation function ReLU
Optimizer Adam

We consider the scenarios when the number of users is 2, 3, 4
and 5 times the number of subchannels. Figure 3 shows the rela-
tionship between the proposed ADQN algorithm and the iteration
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Figure 3: Training Effect Demonstration of ADQNunderDif-
ferent Scenarios.

step under the scenario of different number of users when λ = 0.7.
It can be seen that even if the number of users is more than 5 times
the number of subchannels, all reward values converge to stabil-
ity as the training step increases, this indicates that the ADQN
algorithm has excellent convergence. Furthermore, it can be noted
that increasing the number of users or decreasing the number of
available subchannels will result in a smaller final reward, which is
consistent with the definition of the reward in (18).

To better illustrate the performance of ADQN algorithm, we
compare it with DQN algorithm and random policy in the same
networks and hyperparameters.

We must point out that there is not any coordination and ex-
change between users in our proposed algorithm, which starts from
random exploration. Therefore, as shown in Figure 4 (a), after train-
ing, the return value of our algorithm is more than 3 times that of
the random policy in (6,2,2). And as shown in Figure 4 (b), when the

random allocation algorithm almost fails (the reward is close to 0),
the reward of the algorithm can still reach about 0.3. As shown in
Figures 4(c) and 4(d), the ADQN algorithm significantly improves
the QoE average and fairness performance compared to the random
policy. In addition, compared with DQN, the algorithm has better
performance (about 4% mean of QoE and 7% fairness index).

As shown in Figure 5, with the increase of the number of users,
the time required for calculation increases exponentially with the
number of state spaces, and the convergence speed of ADQN algo-
rithm is significantly faster than that of DQN algorithm. In addition,
compared with DQN algorithm, the convergence time of the pro-
posed algorithm is reduced by 18% in (8,2,4) and 22% in (10,2,2).

Figure 6 shows the performance comparison of different algo-
rithms under different compromise coefficients λ in (6,2,2). As we
can see, the reward value of the learning algorithm decreases as
λ increases because the growth rate of the QoE mean is smaller
than the reduction rate of fairness. It is important to note that the
trend of the reward function varies in other scenarios where the
growth rate of the average QoE is faster than the reduction rate of
fairness and the reward value of the learning algorithm increases as
λincreases, which is determined by the concavity and convexity of
the optimization problem. Furthermore, we can see that the ADQN
algorithm can obtain approximate solutions under different λ and
it still has a slight performance advantage over the DQN algorithm.

6 CONCLUSION
In this paper, we study a dynamic spectrum allocation scheme for
multiple heterogeneous users in the presence of resource shortage.
By introducing a tradeoff factor λ, we modeled the dynamic spec-
trum allocation problem as an optimization problemwhich balances
user QoE mean and fairness. Based on this, we propose a ADQN

Figure 4: Training Effect Comparison of Different Algorithms. (a) Comparison of Reward Function in (6,2,2). (b) Comparison
of Reward Function in (8,2,4). (c) Comparison of QoE Mean in (8,2,4). (d) Comparison of Fairness Index in (8,2,4).
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Figure 5: Convergence Speed Comparison of Different Algo-
rithms.

Figure 6: Reward Function Comparison of Different Algo-
rithms Versus λ.

algorithm with prioritized experience playback. Numerical results
show that the algorithm is able to converge to different number of
users and λ with excellent robustness. In addition, the algorithm has
a faster convergence rate and slightly better performance compared
to other algorithms.
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